
Mutation and Fitness Scalling in GAs

Debasis Samanta

Indian Institute of Technology Kharagpur

dsamanta@iitkgp.ac.in

15.03.2016

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 1 / 30

Important GA Operations

1 Encoding
2 Fitness Evaluation and Selection
3 Mating pool
4 Reproduction

Crossover
Mutation
Inversion

5 Convergence test

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 2 / 30

This lecture includes ...

1 Encoding
2 Fitness evaluation and Selection
3 Mating pool
4 Crossover
5 Mutation
6 Inversion
7 Convergence test
8 Fitness scaling

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 3 / 30

Mutation Operation

In genetic algorithm, the mutation is a genetic operator used to
maintain genetic diversity from one generation of a population (of
chromosomes) to the next.
It is analogues to biological mutation.
In GA, the concept of biological mutation is modeled artificially to
bring a local change over the current solutions.

Mutation in Natural Biological

Process

Evolution

Evolution
Local optima

Global optima

Mutation in Genetic Algorithm

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 4 / 30

Mutation Operation in GAs

Like different crossover techniques in different GAs there are many
variations in mutation operations.

Binary Coded GA :
Flipping
Interchanging
Reversing

Real Coded GA :
Random mutation
Polynomial mutation

Order GA :
Tree-encoded GA :

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 5 / 30

Mutation operation in Binary coded GA

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 6 / 30

Mutation Operation in Binary coded GA

In binary-coded GA, the mutation operator is simple and straight
forward.
In this case, one (or a few) 1(s) is(are) to be converted to 0(s) and
vice-versa.
A common method of implementing the mutation operator involves
generating a random variable called mutation probability (µp) for
each bit in a sequence.
This mutation probability tells us whether or not a particular bit will
be mutated (i.e. modified).

Note :

To avoid large deflection, µp is generally kept to a low value.
It is varied generally in the range of 0.1

L to 1.0
L , where L is the string

length.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 7 / 30

Mutation in Binary-coded GA : Flipping

Here, a mutation chromosome of the same length as the
individual’s chromosome is created with a probability pµ of 1′s in
the bit.

For a 1 in mutation chromosome, the corresponding bit in the
parent chromosome is flipped (0 to 1 or 1 to 0) and mutated
chromosome is produced.

1 0 1 1 0 0 1 0

offspring

1 0 0 0 1 0 0 1

Mutation chromosome

0 0 1 1 1 1 0 0

Mutated offspring

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 8 / 30

Binary-coded GA : Interchanging

Two positions of a child’s chromosome are chosen randomly and
the bits corresponding to those position are interchanged.

01

011 0 1 0 1 0

Child chromosome

1 1 1 0 0 1

Mutated chromosome

* *

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 9 / 30

Mutation in Binary-coded GA : Reversing

A positions is chosen at random and the bit next to that position
are reversed and mutated child is produced.

11

010 1 0 0 1 1

0 1 0 0 1 1

Mutated chromosome

*

Child chromosome

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 10 / 30

Mutation operation in Real-coded GA

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 11 / 30

Mutation Operation in GAs

Like different crossover techniques in different GAs there are many
variations in mutation operations.

Binary Coded GA :
Flipping
Interchanging
Reversing

Real-coded GA :
Random mutation
Polynomial mutation

Order GA :
Tree-encoded GA :

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 12 / 30

Mutation in Real-coded GA : Random mutation

Here, mutated solution is obtained from the original solution using
the following rule.

Pmutated = Poriginal + (r − 0.5)×∆

Where r is a random number lying between 0.0 and 1.0 and ∆ is
the maximum value of the perturbation decided by the user.

Example :

Poriginal = 15.6

r = 0.7

∆ = 2.5

Then, Pmutated = 15.6 + (0.7− 0.5)× 2.5 = 16.1

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 13 / 30

Mutation in Real-coded GA : Polynomial mutation

It is a mutation operation based on the polynomial distribution.
Following steps are involved.

1 Calculate a random number r lying between 0.0 and 1.0
2 Calculate the perturbation factor δ using the following rule

δ =

{
(2r)

1
q+1 − 1 ,if r < 0.5

1− [2 (1− r)]
1

q+1 ,if r ≥ 0.5

where q is a exponent (positive or negative value) decided by the
user.

3 The mutated solution is then determined from the original solution
as follows

Pmutated = Poriginal + δ ×∆

Where ∆ is the user defined maximum perturbation allowed
between the original and mutated value.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 14 / 30

Mutation in Real-coded GA : Polynomial mutation

Example :

Poriginal = 15.6, r = 0.7, q = 2, ∆ = 1.2 then Pmutated =?

δ = 1− [2 (1− r)]
1

q+1 = 0.1565

Pmutated = 15.6× 0.1565× 1.2 = 15.7878

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 15 / 30

Revisiting the flow in GA

Start

Initial Population

Converge ?

Stop

Fitness evaluation &

Selection

Select Mate

Crossover

Mutation

Inversion

Yes

No

S
e

le
c

ti
o

n
R

e
p

r
o

d
u

c
ti

o
n

Encoding

?

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 16 / 30

Termination and/or convergence criteria

Each iteration should be tested with some convergence test.
Commonly known convergence test or termination conditions are :

1 A solution is found that satisfies the objective criteria.

2 Fixed number of generation is executed.

3 Allocated budget (such as computation time) reached.

4 The highest ranking solution fitness is reaching or has reached a
plateau such that successive iterations no longer produce better
result.

5 Manual inspection.

6 Combination of the above.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 17 / 30

Fitness Scaling in GA

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 18 / 30

Issue with fitness values

Let us look into a scenario, which is depicted in the following figure.

Search space

F
it
n

e
s
s
 v

a
lu

e

Worst individuals

Best

individuals

Here, the fitness values are with wider range of values.
It then highly favors the individuals with large fitness values and
thus stuck at local optima/premature termination/inaccurate result.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 19 / 30

Issue with fitness values

Now, let us look into another scenario, which is depicted in the
following figure.

Search space

F
it
n

e
s
s
 v

a
lu

e

Here, the fitness values are with narrower range of values.
In this case, successive iterations will not show any improvement
and hence stuck at local optima/premature termination/inaccurate
result.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 20 / 30

Summary of observations

It is observed that

If fitness values are too far apart, then it will select several copies
of the good individuals and many other worst individual will not be
selected at all.

This will tend to fill the entire population with very similar
chromosomes and will limit the ability of the GA to explore large
amount of the search space.

If the fitness values are too close to each other, then the GA will
tend to select one copy of each individual, consequently, it will not
be guided by small fitness variations and search scope will be
reduced.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 21 / 30

Why fitness scaling?

As a way out we can think for crossover or mutation (or both) with
a higher fluctuation in the values of design parameter.

This leads to a chaos in searching.
May jump from one local optima to other.
Needs a higher number of iterations.

As an alternative to the above, we can think for fitness scaling
strategy.

Fitness scaling is used to scale the raw fitness values so that the GA
sees a reasonable amount of difference in the scaled fitness values of
the best versus worst individuals.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 22 / 30

Approaches to fitness scaling

In fact, fitness scaling is a sort of discriminating operation in GA.

Few algorithms are known for fitness scaling:

Linear scaling

Sigma scaling

Power law scaling

Note:
The fitness scaling is useful to avoid premature convergence, and
slow finishing.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 23 / 30

Linear scaling

Algorithm

Input : F = {f1, f2 · · · fN} is a set of raw fitness values of N
individuals in a population (initial).

Output : F ′ =
{

f ′1, f
′
2 · · · f ′N

}
is a set of fitness values after scaling

Steps :

1 Calculate the average fitness value

f̄ =
∑N

i=1 fi
N

2 Find fmax = MAX (F), Find the maximum value in the set F .

3 Find fmin = MIN(F), Find the minimum value in the set F .

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 24 / 30

Linear scaling

4 Calculate the following,

a = f̄
fmax−f̄

,

b = f̄∗fmin
fmin−f̄

5 For each fi ∈ F do

f ′i = a× fi + b

F ′ = F ′ ∪ f ′i

where F ′ is initially empty.
6 End

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 25 / 30

Linear scaling

Note :

1 For better scaling it is desirable to have f̄ = f̄ ′

2 In order not to follow dominance by super individuals, the number
of copies can be controlled with f ′max = C × f̄ ′ where C = fmax−fmin

f̄−fmin

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 26 / 30

Sigma scaling

Algorithm

Input : F = {f1, f2 · · · fN} is a set of row fitness values of N
individuals in a population.

Output : F ′ =
{

f ′1, f
′
2 · · · f ′N

}
is a set of fitness values after scaling.

Steps :

1 Calculate the average fitness value

f̄ =
∑N

i=1 fi
N

2 Determine reference worst-case fitness value fw such that
fw = f̄ + S ∗ σ

Where σ = STD(F), is the standard deviation of the fitness of
population and

S is a user defined factor called sigma scaling factor (Usually
1 ≤ S ≤ 5)

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 27 / 30

Sigma scaling

3 Calculate f ′i as follows

For each fi ∈ F do

f ′i = fw − fi , if (fw > fi)

Else f ′i = 0

4 Discard all the individuals with fitness value 0

5 Stop

Note :

Linear scaling (only) may yield some individuals with negative
fitness value.
Hence, Linear scaling is usually adopted after Sigma scaling to
avoid the possibility of negative fitness individuals.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 28 / 30

Power law scaling

In power law scaling, the scaled fitness value is given by

f ′i = f k
i

where k is a problem dependent constant.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 29 / 30

Any questions??

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 15.03.2016 30 / 30

